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Zhou X, Yang S, Yan F, He K, Zhao A. Genome-wide DNA
methylation profiles of porcine ovaries in estrus and proestrus. Physiol
Genomics 50: 714–723, 2018. First published May 18, 2018; doi:
10.1152/physiolgenomics.00052.2017.—DNA methylation is an im-
portant epigenetic modification involved in the estrous cycle and the
regulation of reproduction. Here, we investigated the genome-wide
profiles of DNA methylation in porcine ovaries in proestrus and estrus
using methylated DNA immunoprecipitation sequencing. The results
showed that DNA methylation was enriched in intergenic and intron
regions. The methylation levels of coding regions were higher than
those of the 5=- and 3=-flanking regions of genes. There were 4,813
differentially methylated regions (DMRs) of CpG islands in the estrus
vs. proestrus ovarian genomes. Additionally, 3,651 differentially
methylated genes (DMGs) were identified in pigs in estrus and
proestrus. The DMGs were significantly enriched in biological pro-
cesses and pathways related to reproduction and hormone regulation.
We identified 90 DMGs associated with regulating reproduction in
pigs. Our findings can serve as resources for DNA methylome
research focused on porcine ovaries and further our understanding of
epigenetically regulated reproduction in mammals.

DNA methylation; estrus vs. proestrus; MeDIP-Seq; porcine ovary

INTRODUCTION

DNA methylation is an important epigenetic modification in
eukaryotes (10) and is often associated with chromatin con-
densation, histone deacetylation, genomic imprinting, and dis-
ease development (48, 51, 54). DNA methylation in promoter
regions leads to stable gene silencing (7, 20, 33). Recent
studies have demonstrated that DNA methylation in gene
bodies can also affect gene expression (69). DNA methylation
often occurs at the 5-position of cytosine and has been found in
every vertebrate examined. In somatic cells, DNA methylation
typically occurs in CpG dinucleotides (CpGs). Non-CpG meth-
ylation involving CpT, CpA, and CpC is prevalent in embry-
onic stem cells and neural cells (4, 15, 37, 38). The majority of
CpGs are methylated, whereas unmethylated CpGs are often
grouped in clusters called CpG islands (CGIs), which are
present in the 5=-regulatory regions of many genes. Overall,
60% of the CGIs of all gene promoters are unmethylated (64).

The domestic pig (Sus scrofa) is an important farm animal
that is used as a food source. Pigs are also used for biomedical
research and comparative genome studies because of their

physiological, metabolic, and genomic similarities to humans
(11, 34, 55, 70). Transcriptomes analysis of mRNA and
miRNA are widely studied to investigate the molecular mech-
anisms of phenotype differences in pigs, such as variations in
skeletal muscle growth or fatness (17, 61, 75). However, more
studies are needed to gain insight on the methylomes of pigs.
Artificial selection for high prolificacy and meat production has
transformed the DNA methylation pattern in pigs, resulting in
associated genotypic and phenotypic changes, such as in the
Landrace, Rongchang, and Tibetan pig breeds. In Europe, the
Landrace breed has been selected for more than 100 yr for its
propensity toward having less adipose tissue, whereas the
Rongchang breed has been selected for its abundant adipose
tissue, and the Tibetan breed is essentially a wild breed that has
undergone very little artificial selection. During the transfor-
mation process, the DNA methylomes of these pig breeds also
had variable patterns in different anatomic tissues (11, 34),
leading to changes in chromatin structure and gene transcrip-
tion. In females, ovaries are critical regulators of reproduction
and breeding, and DNA methylation plays a crucial role in the
estrous cycle and follicular maturation in the ovaries (18, 39,
40, 45, 73). Several whole-genome studies have revealed that
DNA methylation is associated with polycystic ovary disease,
and there is increasing evidence that DNA methylation is
crucial in ovary development and maturation (50, 66, 67, 71).

Many technologies have been developed to analyze genome-
wide DNA methylation profiles, including methylated DNA
binding domain sequencing (MBD-Seq), methylated DNA im-
munoprecipitation sequencing (MeDIP-Seq), whole genome
bisulfite sequencing (WGBS) and reduced representation bisul-
fite sequencing (RRBS) (1, 38, 46, 60). The resolutions of
MBD-Seq and MeDIP-Seq are ~200 bp via the enrichment of
methylated DNA (8, 16), whereas WGBS and RRBS achieve
single-base resolution through bisulfite conversion. Although
the resolution and genomic coverage of MeDIP-Seq is lower
than that of WGBS and RRBS, it is a cost-effective approach
for comparative methylome analysis. MeDIP has already been
widely used in genome-wide methylation analysis of many
animals (12, 35, 52, 59, 65).

Here, we used MeDIP-Seq to obtain genome-wide DNA
methylation profiles of porcine ovaries from proestrus and
estrus pigs to analyze their methylomes. To obtain detailed
DNA methylation profiles, the methylation levels of porcine
ovaries and the methylation status of intergenic and coding
regions were analyzed. We obtained DNA methylation profiles
for pigs in different stages of the estrous cycle and identified
differentially methylated genes (DMGs) related to the repro-
ductive process and the regulation of hormones that might
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contribute to reproductive regulation within the estrous cycle.
Our findings will advance our understanding of the methylome
of the porcine ovary.

MATERIALS AND METHODS

Ethics statement. Tissue collection was conducted at slaughter
according to the Regulations for the Administration of Affairs Con-
cerning Experimental Animals (Ministry of Science and Technology,
China, revised in June 2004). Tissue collection procedures were
approved by the Animal Care and Use Committee of Zhejiang
Agriculture and Forestry University (Lin’an, Zhejiang, China), to
ensure compliance with international guidelines for animal welfare.

Animals. Ovarian samples were collected respectively from three
estrus and three proestrus multiparous sows (Landrace, 28 mo old,
fourth parity). The animals were reared in the same environment and
were fed the same diet ad libitum. All animals were inspected daily for
health status, and no symptoms of diseases were displayed. The estrus
pigs were humanely killed within 24 h of exhibiting standing reflex;
the proestrus pigs were humanely killed 16 days after exhibiting
standing reflex. The lutea were removed, and ovarian samples were
quickly frozen in liquid nitrogen before storage at �80°C.

DNA extraction and preparation for MeDIP. The ovaries from each
pig was were placed into a mortar containing liquid nitrogen. DNA
was extracted from the homogenized mixed powder using a Genomic
DNA clean and concentrator Kit (D4011, Zymo) according to the
manufacturer’s instructions. Qubit DNA BR assay kit (Q32850,
Thermo) was used for DNA quantification. For MeDIP, genomic
DNA was sonicated to produce DNA fragments ranging in size from
150 to 500 bp using a Covarias sonication system. After end repair,
base addition at the 3=-end and adapter ligation was performed using
a NEXTflex methyl-seq 1 kit (5118-01, Bioo) and a NEXTflex DNA
barcode-6 kit (514101, Bioo). Double-stranded DNA was denatured
for 10 min at 95°C to obtain single-stranded DNA, which was
immunoprecipitated using a Methylated DNA IP Kit (D5101, Zymo).

MeDIP library preparation and sequencing. MeDIP methyl en-
riched DNA was purified with a ZYMO DNA Clean and Concentrator
kit following the manufacturer’s instructions and amplified using a
NEXTflex methyl-seq 1 kit (5118-01, Bioo). After excising amplified
DNA between 220 and 320 bp in length on a 2% agarose gel, we
purified the DNA with a Minelute Gel Extraction Kit (28604, Qiagen).
The quality and quantity of the amplified DNA were evaluated using
an Agilent 2100 Bioanalyzer High Sensitivity DNA chip. The quan-
tification of library molarity was done using a Kapa RT-qPCR Kit
(KK4602, KAPA Biosystem). The qualified libraries were subjected
to high-throughput sequencing using an Illumina HISeq 2500 (Illu-
mina) to generate 49 bp paired-end reads for methylation profiles
analysis by the Beijing CapitalBio (Beijing, China).

Data analysis. Raw reads containing adapters, unknown, or low-
quality bases were first filtered out using the NGS QC Toolkit
software, and the purified reads were used for subsequent analyses.
The purified reads were then aligned to S. scrofa reference genome
downloaded from UCSC (http://genome.ucsc.edu/) with Burrows-
Wheeler alignment. Uniquely mapped reads with high mapping qual-
ity (score � 10) were analyzed using the MEDIPS software package.
MEDIPS is used to conduct genome-wide differential coverage anal-
ysis of sequencing data derived from DNA enrichment experiments.
Methylation level estimation and differential methylation analysis
were performed with MEDIPS for all consecutive 250 bp windows
across the genome. Annotation information from the porcine reference
genome was derived from TxDb.Sscrofa.UCSC.susScr3.refGene and
org.Ss.eg.db using the R Bioconductor software package. The
genomic regions 2 kb upstream and 500 bp downstream of the TSS
were considered proximal promoter regions. Annotation information
on CPIs was derived from files downloaded from UCSC (http://
hgdownload.cse.ucsc.edu/goldenPath/susScr3/database/). Differentially
methylated regions (DMRs) were identified using edger Bio-conductor

package following the exact test for a negative binomial distribution.
Genes related to DMRs that exhibited a greater than twofold difference in
the number of reads between different samples and a P value � 0.01 were
identified as DMGs. Gene ontology (GO) and KEGG pathway enrich-
ment analyses of the DMGs were performed using KOBAS 2.0.

MeDIP assay. Genomic DNA was extracted by overnight protei-
nase K digestion in lysis buffer (50 mM Tris·HCl pH 8.0, 10 mM
EDTA pH 8.0, 0.5% SDS) before phenol-chloroform extraction,
ethanol precipitation, and RNaseA digestion. Genomic DNA was
sonicated to produce DNA fragments ranging in size from 300 to 800
bp. The fragmented DNA (5 �g for MeDIP) was denatured for 10 min
at 95°C and immunoprecipitated overnight at 4°C with 2 �g mouse
monoclonal antibody for 5-methylcytosine (5mC) (ab10805, Abcam)
in a final volume of 500 �l immunoprecipitation (IP) buffer (10 mM
sodium phosphate pH 7.0, 140 mM NaCl, 0.5% Triton X-100). We
incubated the mixture was incubated with 60 �l protein A/G agarose
(SC2003, Santa Cruz Biotechnology) for 2 h before washing all
unbound fragments three times with 1 ml IP buffer. Washed beads
were then resuspended in 250 �l of lysis buffer and incubated with
proteinase K for 2 h at 50°C. Immunoprecipitated DNA fragments were
then purified using DNA purification columns (28104, QIAGEN, Ger-
many) and eluting into 20 �l TE. For quantitative (q)PCR analysis,
MeDIP products were validated by real-time quantitative PCR (RT-
qPCR) using SYBR premix Ex tag II (RR820A, Takara) for qPCR
analysis, 10 �l were diluted in 100 �l TE with each qPCR reaction
using 2 �l of diluted DNA. DNA copies in immunoprecipitation
samples were normalized to input DNA control samples. Primers and
parameters information for MeDIP is available in the supplemental
material (Supplemental Table S1). (The online version of this article
contains supplemental material.)

Statistics. Data are presented as means � SE. Significant differ-
ences were analyzed by the Mann-Whitney test or one-way ANOVA
using SPSS software (ver., 20.0, SPAA). P values � 0.05 were
considered to be statistically significant.

RESULTS

Mapping and statistical analysis of MeDIP-Seq reads in
chromosomes. To understand the effects of DNA methylation
during the pig estrous cycle, we performed MeDIP-Seq anal-
ysis of the ovaries of estrus and proestrus pigs. Ovarian DNA
was extracted from three estrus ovaries (es-ovaries) and
three proestrus ovaries (proes-ovaries). Then, we performed
genome-wide DNA methylation profiling of each ovary
sample using MeDIP-Seq. After filtering out raw reads
containing adapters, unknown, and low quality bases, we
obtained ~39–55 million clean reads for each library. In the
three estrus pigs, the rates of clean reads were 92.53, 92.41,
and 94.37%. In the three proestrus pigs, the rates of clean reads
were 94.7, 95.06, and 94.44% (Table 1). In the estrus samples
80.14, 80.03, and 81.98% of the reads were mapped to the S.
scrofa genome assembly ver. 10.2. In the proestrus samples
82.75, 81.86, and 82.45% of the reads were mapped to the S.

Table 1. Characteristics of the reads in estrus and proestrus
porcine ovaries

Sample Raw Reads Clean Reads Clean Rate, % Q20 Q30

Estrus1 46121192 42677154 92.53 96.97 92.16
Estrus2 42412856 39192198 92.41 96.95 92.10
Estrus3 45795310 43216154 94.37 97.48 93.31
Proestrus1 56376974 53389146 94.70 97.58 93.55
Proestrus2 55709524 52957542 95.06 97.69 93.85
Proestrus3 59010814 55731656 94.44 97.48 93.32
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scrofa genome assembly ver. 10.2 (Table 2). MeDIP-Seq reads
were detected in all porcine chromosomes (SSC1–18, mito-
chondria and the X chromosome). In chromosomes 1, 2, 13,
and 15 of estrus pigs, the distributions of reads in the S. scrofa
genome were significantly decreased compared with those in
proestrus pigs. By contrast, in chromosomes 3, 6, 7, 10, 11, and
12 of estrus pigs, the distributions of reads in the S. scrofa
genome were significantly increased compared with those of
proestrus pigs (Fig. 1A) (raw data in Supplemental Table S2).
In estrus pigs, 21–30% and 31–40% of the GC contents of the
reads were significantly decreased compared with those of
reads in proestrus pigs, and 51–60% of the GC contents of the
reads were significantly increased (Fig. 1B) (raw data in
Supplemental Table S2).

Next, we evaluated the methylation profiles around the
genome. An analysis of reads distributions in different ele-
ments of the ovary genome region showed that reads were
present primarily in intergenic and intron regions. The propor-
tions of MeDIP-Seq reads mapping to promoter elements, exon
elements and intron elements in proes-ovaries were 0.51, 0.58,
and 5.97%, respectively, whereas they were 0.54, 0.68, and
6.06%, respectively, in es-ovaries. The reads distributions in
the promoter and exon regions were significantly increased
compared with those of proestrus pigs (Fig. 2A) (raw data in
Supplemental Table S2). We also analyzed the distributions of
reads in 2,000 bp regions upstream from transcription start
sites (TSS), in coding regions and in the 3,000 bp regions
downstream from transcription ending site (TES). DNA meth-
ylation around the TSS showed low peaks in both estrus and
proestrus pigs; after a sharp increase in DNA methylation in
the 5=-region of the coding region, the methylation level

remained high until the TES, whereas DNA hypomethylation
was present at the 3=-ends of genes. The methylation level
was higher in the coding regions of estrus than in those of
proestrus pigs. We also found two spikes in coding regions,
which suggests some common regions in genes are modified
(Fig. 2B).

Comparison of DMRs between estrus and proestrus pigs.
We detected 80,207 hypomethylated DMRs (Supplemental
Table S3) and 32,059 hypermethylated DMRs (Supplemental
Table S4) in the estrus vs. proestrus comparison. To compare
the DNA methylation profiles of the porcine ovaries, the
MEDIPS package was used to identify DMRs (P value � 0.01
and |log2FC| � 1) across groups of samples (Fig. 3A). After
merging significant neighboring windows, we found that the
majority of DMRs were located in intron (4,732 hypomethy-
lated and 1,954 hypermethylated regions, detailed list of DMRs
in Supplemental Tables S5 and S6) and intergenic (74,116
hypomethylated and 29,426 hypermethylated regions) ele-
ments. The comparisons between estrus vs. proestrus ovarian
genomes identified 4,813 (4.29%) DMRs of CGIs. The CGI
elements of the coding and 5=- and 3=-flanking regions included
228 hypomethylated and 274 hypermethylated DMRs (detailed
list of DMRs in Supplemental Tables S7 and S8). Promoter elements
contained 529 hypomethylated and 223 hypermethylated DMRs
(detailed list of DMRs in Supplemental Tables S9 and S10). Exon
elements contained 413 hypomethylated and 306 hypermethylated
DMRs (detailed list of DMRs in Supplemental Tables S11 and S12)
(Fig. 3B). Interestingly, we identified 17 hypomethylated DMRs of
miRNAs: ssc-MIR182, ssc-MIR9793, ssc-MIR181C, ssc-MIR143,
ssc-MIR145, ssc-MIR339-1, ssc-MIR9795, ssc-MIR9819, ssc-
MIR9790, ssc-MIR328, ssc-MIR125A, ssc-MIR429, ssc-MIR493,
ssc-MIR9846, ssc-MIR29B-2, ssc-MIR9788-2, and ssc- MIR202
(details on their positions are listed in Supplemental Table S3). We
also identified 16 hypermethylated DMRs of miRNAs: ssc-
MIR9796, ssc-MIR365-1, ssc-MIR196A-2, ssc-MIR769, ssc-
MIR9841, ssc-MIR127, ssc-MIR95, ssc-MIR9846, ssc-MIR326,
ssc-MIR708, ssc-MIR9814, ssc-MIR9788-2, ssc-MIR142, ssc-
MIR10B, ssc-MIR218B, and ssc-MIR504 (details on their positions
are listed in Supplemental Table S4). Most of the DMRs of miRNAs
were spread randomly in the genome. The physical positions of the

Table 2. Mapping results of MeDIP-Seq

Sample Total Reads Mapped Reads Mapped Rate, %

Estrus1 42677154 34201272 80.14
Estrus2 39192198 31364392 80.03
Estrus3 43216154 35426686 81.98
Proestrus1 53389146 44177378 82.75
Proestrus2 52957542 43350580 81.86
Proestrus3 55731656 45952302 82.45
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Fig. 1. Read distributions in pig genomes. A: chromosome distributions of reads in estrus (es-ovary) compared with proestrus ovaries (proes-ovary). B: read
distributions of GC content in the estrus vs. proestrus ovary genomes. Significant differences were assessed by the Mann-Whitney test. Letters denote significant
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DMRs in the pig chromosomes of estrus and proestrus pigs were also
compared (SSC1-18, mitochondria and the X chromosome; Fig. 3C).

DMGs. The DMGs were identified using DMR data. We
detected 3,134 hypermethylated and 3,570 hypomethylated
DMGs in the estrus and proestrus pigs (Fig. 4A). After filtering
out the DMGs with DMRs only located in intergenic regions,
we identified 1,090 hypermethylated and 1,892 hypomethy-
lated DMGs in estrus and proestrus pigs. In estrus vs. proestrus
pigs, there were 161 hypermethylated and 389 hypomethylated
DMGs in the promoter regions (Fig. 4B), 217 hypermethylated
and 318 hypomethylated DMGs in the exon regions (Fig. 4C),
and 783 hypermethylated and 1,399 hypomethylated DMGs in
the intron regions (Fig. 4D). The methylation details of the
DMGs are listed in Supplemental Tables S13 and S14; high-
lighted lines indicate the same genes with different DMRs.

Validation of MeDIP-Seq data via MeDIP and RT-qRCR
analysis. To confirm the reliability of the MeDIP-Seq results,
three gene (IRF7, NNAT, and COX17) promoter regions show-
ing hypermethylation in es-ovaries vs. proes-ovaries and three
gene (DMRT1, PDLIM4, and FKBP10) promoter regions
showing hypomethylation in es-ovaries vs. proes-ovaries were
randomly selected for validation using MeDIP and RT-qPCR
analysis. MeDIP-qPCR analysis shows that the 5mC levels of
CGIs in the IRF7, NNAT, and COX17 promoters were signif-
icantly increased in estrus pigs compared with proestrus pigs.

In the DMRT1, PDLIM4, and FKBP10 promoters, the 5mC
levels of CGIs were significantly decreased in estrus pigs
compared with proestrus pigs. These results are consistent with
the MeDIP-Seq results (Fig. 5).

GO analysis of DMGs. GO analysis was performed for the
DMGs detected in both estrus and proestrus pigs. We identified
3,651 DMGs, a total of 2,038 DMGs were annotated in three
categories: biological process, cellular component, and molec-
ular functions. The DMGs that involved biological processes
include the following enriched terms: metabolic process (1,259
DMGs), response to stimulus (833 DMGs), multicellular or-
ganismal process (621 DMGs), localization (601 DMGs), re-
production process (142 DMGs), biological adhesion (137
DMGs), and reproduction (107 DMGs) (Fig. 6A). The DMGs
involved in cellular components include the following en-
riched terms: catalytic activity (641 DMGs), molecular
transducer activity (201 DMGs), molecular function regu-
lator (121 DMGs), enzyme regulator activity (106 DMGs),
and structural molecule activity (88 DMGs) (Fig. 6B). The
DMGs that were involved in molecular function include the
following enriched terms: cell part (1,485 DMGs), extracellu-
lar region (606 DMGs), membrane part (603 DMGs), organelle
part (572 DMGs), and extracellular region part (483 DMGs)
(Fig. 6C). The GO enrichment analysis was performed to gain
insight into the biological processes, cellular components, and
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molecular functions in which the DMGs might be involved.
The significantly enriched GO terms of DMGs are listed in Fig.
6D (false discovery rate � 0.05). In the estrus pigs vs. proes-
trus pigs, the most significantly enriched terms were hormone
activity, immune response, positive regulation of immune
system process, response to hormone, receptor binding, steroid
metabolic process, steroid metabolic process, and cell choles-
terol metabolic process. KEGG pathway analysis was per-
formed to investigate the pathways in which the DMGs are
involved. The estrus pigs vs. proestrus DMGs were signifi-
cantly enriched in the PPAR, AMPK, Toll-like receptor, Pro-
lactin, and NF-�B signaling pathways.

Candidate DMGs associated with reproduction regulation.
DMGs associated with reproductive process and hormone
regulation were identified. In coding regions and 5=- and
3=-flanking regions, we found 67 DMGs in estrus and proestrus

pigs that were involved in reproductive processes (DMG de-
tails are listed in Supplemental Table S15); 23 DMGs involved
in hormone regulation were also identified (DMG details are
listed in Supplemental Table S16). We retrieved DMGs ac-
cording to the GO enrichment analysis (details of GO enrich-
ment are shown in Supplemental Table S17).

DISCUSSION

In females, the ovary is the ovum producing reproductive
organ that is responsible for controlling reproductive pro-
cesses. Studies have demonstrated that DNA methylation plays
an important role in the maturation of the ovary and the estrous
cycle (28, 32, 39–41). In this study, we determined genome-
wide DNA methylation profiles using MeDIP-Seq, to investi-
gate the differences in the methylome in estrus and proestrus
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porcine ovaries. We compared the whole-genome methylation
profiles of ovaries from three estrus and three proestrus pigs
and identified a number of DMGs that might affect the repro-
ductive process and hormone regulation during the estrous
cycle.

Our results show that the read distributions were highest
in intergenic regions, followed by intron and exon regions;
these findings are similar to the results for other species (49,
59). We found that the read distributions in chromosomes in
estrus and proestrus ovaries differed significantly; during
estrus the methylation or demethylation of CpGs may have
occurred more frequently in chromosomes in which the read
distribution changed significantly. The read distributions
were also positively correlated with the GC content, which
is in accordance with the results from other MeDIP-Seq
studies (63, 70). The distribution difference may provide a
feature for analyzing DMRs and DMGs. Our results indicate

that the read distributions in exon regions were increased in
estrus ovaries, potentially due to the regulatory role of DNA
methylation in alternative splicing (31, 44); therefore, we
speculate that alternative splicing might occur during the
estrous cycle in pigs.

We found 65 hypomethylated and 42 hypermethylated
DMRs in CGIs of promoter elements, implying that the ex-
pression of related genes might be up- or downregulated.
Moreover, we also found 100 hypermethylated and 48 hypom-
ethylated DMRs in CGIs located in exon elements, and 100
hypermethylated and 83 hypomethylated DMRs in CGIs lo-
cated in intron elements (Supplemental Tables S13 and S14).
Some studies have suggested that DNA methylation in coding
regions does not block gene expression and might actually
stimulate it (21, 61). Therefore, the DMRs we identified in
exons and introns might be involved in regulating gene expres-
sion. In the current study, the methylation level in exons was
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much higher than in introns as the CpG content of exons was
also greater than that of introns (53). This methylation differ-
ence might affect pre-mRNA alternative splicing (26, 44, 57).
The role of altered methylation in exons and introns is still

unclear, and further studies are needed to determine the effects
of DNA methylation in coding regions on transcription. Most
genes had several methylated regions in their promoters and
coding regions. Hypomethylation and hypermethylation of the
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coding regions in the pig genome might be important for
regulating gene expression.

We identified 3,134 hypermethylated and 3,570 DMGs hy-
pomethylated in estrus vs. proestrus pigs according to the
DMRs data. Because the typical CGIs in promoters are more
suitable for validation by MeDIP-qPCR, we randomly chose
three hypermethylated genes (IRF7, NNAT, and COX17) and
three hypomethylated genes (DMRT1, PDLIM4, and FKBP10)
in promoters for validation by MeDIP and RT-qPCR analysis,
and the results were in accordance with the MeDIP-Seq data.
The DMRs with few CpGs were more difficult to analyze by
MedIP-qPCR. Generally, the estrous cycle involves follicular
development, ovulation, and hormone secretion in ovaries (24,
42, 58, 74). GO analysis was performed to investigate the
potential functions of the DMGs responsible for regulating
reproduction during the estrous cycle. After filtering out DMGs
with DMRs located only in intergenic regions, we identified 67
DMGs involved in reproductive processes in estrus and proes-
trus pigs (Supplemental Table S15). We also found 23 DMGs
involved in hormone regulation (Supplemental Table S16). For
example, CYP1A1 was screened as a DMG and plays a key
role in estradiol metabolism and follicular growth (2, 47).
CYP19A2 and CYP19A1 are the terminal enzymes in the
steroidogenic pathway and are responsible for the aromatiza-
tion of androgens into estrogens in follicles, affecting granu-
losa cell proliferation and follicle growth in proestrus stage (5,
23). We also screened CGA as a DMG. The CGA gene is
responsible for coding the alpha subunits of chorionic go-
nadotropin, luteinizing hormone, follicle stimulating hor-
mone (FSH), and thyroid stimulating hormone. The alpha
subunits of these hormones are identical; these hormone are
crucial for follicle development (3, 14, 25, 76). BMP-7
could increase the expression of FSH receptor in human
granulosa cells, affecting their growth (56). ZP3 functions
as the sperm receptor and is associated with the number of
piglets born alive (29, 72). The interplay between IGF1R
and estrogen receptor signaling may affect female reproduc-
tion (6, 27, 68). CFTR is also an important regulator of the
estrous cycle (62). Studies have demonstrated that GALP
can regulate reproduction, body weight, and locomotion via
interplay with insulin and leptin (13, 22). INHBA is a
subunit of both activin and inhibin and plays an important
role in reproductive processes, hormone activity and animal
breeding (9, 19, 77). INHBA can inhibit FSH secretion and
activity in granulosa cells, and INHBA gene mutations were
associated with litter size in sheep 329, 77). Abnormal DNA
methylation in gene promoters and coding regions could
influence gene expression levels (36), although these DMGs
might contribute to regulating reproduction in pigs, the role
of methylation in the expression and alternative splicing of
these genes during reproduction requires further study.

These results suggest that pigs have distinct processes for
reproduction and hormone regulation and suggest that the
differences in DNA methylation play an important role in
regulating reproduction in the estrous cycle. In the current
study, we provide comprehensive genome-wide DNA meth-
ylation profiles of estrus and proestrus ovaries in pigs. These
DNA methylation profiles should provide new clues regard-
ing the epigenetic regulation mechanisms in porcine ovaries.
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